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This technical report has besn revieved end | -
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INTRODUCTION warsvone s, xuwerme  Lo%
Chief, Teehnical Informmtion Piviston
The moving finite element (MFE) method fs a new approach for numerically
solving partial differential equation (POE) systems;(l’z'3) it is parti-
cularly well suited for resolving PDE solutions which may contain large, mul-
tiple gradients over highly disparate scales in both space and time. These
. types of PDE's abound in such basic technical disciplines as aerodynamics
(with emphasis on shear layers, shocks and their possible interactions), com-
bustion, plasma physics, interface phenomena, continuum mechanics, and other

transport processes.

| § O

P v AN
AN

12 .
N &

i In the MFE method, grid co-ordinates themselves are dependent variables
. which are calculated continuously at each time step in order to minimize POE
d residuals. This feature has successfully suppressed numerical dissipation to

very low levels and has resolved accurately in 1-D those physical transport
processes which may occur over extremely small scales (e.g. those described

S
by the Navier -Stokes equations for viscous compressible fluids) simultane- ‘-
K ously with other physical processes which may span macroscopic scales. The 3
objectives of the present research effort are to extend the MFE method to 2-D .
and to investigate its basic properties and needs for solving important PDE's ]
= in 2-D. The work tasks which are contributing to the achievement of these %
objectives are discussed in the next section of this report. .
. | ~
B It was established during the first year of this study that the MFE '
«::: method does extend logically and practically to 2-D. An initial experimental
A 2-D MFE code version was developed in that early work for the purpose of con-
- ducting continuing theoretical and applied mathematical research in diverse :
e scientific contexts. Also in the first year of study, effect_ive MFE node ~
1 movement properties and significant node savings were demonstrated for simple
S'.. -- but yet significant -- test problems in 2-D. The MFE code structure was N
. found to be amenable to vectorization and to use on envisioned advanced com- :
5 puters. :
ﬁ - Having established these milestones in the first year, work during this

second year of study has moved to a new level, focussing now on a host of
B those issues and research needs which are essential to the use of the MFE
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method in truly large-scale 2-D computations. As in the past, some of the
emerging MFE results in 2-D may be unique and/or contrary to conventional
wisdoms. In several areas, they suggest some important lines of research
which should perhaps be pursued more intensively in the future, both by our-
selves and by others.

This report is organized as follows: the Technical Progress section
provides a substantive statement of significant accomplishments and progress
toward achieving the research objectives. The Publications section provides
a cunulative chronological list of written publications in technical journals
and includes those in press and manuscripts of articles in preparation. The
Personnel section lists the professional personnel associated with the re-
search effort, and the final section entitled Interactions lists coupling
activities.

I. TECHNICAL PROGRESS

Work during this period addressed, among other tasks, MFE node movement
properties, ODE solvers for PDE methods, linear systems solvers for the MFE
method, regularization techniques for the MFE method, boundary conditions,
alternative co-ordinate systems, and interface tracking. This was essentially
a building year; i.e., one of building, testing, and implementing both new
and existing mathematical methods which are needed in the investigation of
the MFE method in 2-D. In several areas above our MFE work has barely opened
entire new lines of inquiry, and results are either preliminary or incom-
plete. In such cases, the discussion of progress is necessarily general. On
the other hand there are some significant implications which are already
apparent in some of the new research areas which have been broached during
this period for which the potential significance is indicated more specifi-
cally -- but with the understanding that a great deal of additional work is
needed in order to further substantiate or refute the early indications.

1. MFE Node Movement Propertiesl

Burger's test example can be formulated to pose computational challenges
of varying degrees of difficulty to PDE methods in 2-D. This can be done by
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selecting initial conditions which give rise not only to steep shocks with
planar profiles (as in work during year 1 of this study) but also to highly
skewed wave profiles with gradients of greater of lesser magnitudes.

The PDE's for this skewed Burger's model problem are given by:

Up = -uuy - vuy + v(u,, + ooy ) (1)

Vi = -uvy - vy ¢ V(vy, + \r:yy) (2)

where u is the x component of velocity and v is the y component, and v is an
effective diffusion coefficient. Shocks are generated with gradient magni-
tudes on the order of 1/v. Initial conditions which produce a doubly skewed
wavefront profile are shown schematically in Figures 1 and 2. (The counter-
posed initial velocity fields are designed to create an evolving shock pro-
file which is skewed in both the x and y components of velocity.) Boundary
conditions are given by:

u(0,y) = u(l,y) =0 0. Ly< 1.
v (0, ¥) = v, (1, y) = 0. 0. <y«<1.
u(x, 1) = 0.2 sin wx 0. {x<1.
u(x, 0) = -.2 sin wx 0. {x<1.
vix, 1) = =1. + 0.2 cos mx 0. <x<1.
v(x, 0) = 1. + 0.2 cos =x 0. <x<1 .

The MFE nodes are fixed by zero Dirichlet conditions along the top and bottom
horizontal edges of the domain. The nodes are free to move vertically by
symmetric boundary condfitions along the left and right edges of the domain.

This problem can be solved readily by perhaps many PDE solution methods
whenever v assumes sufficiently large values. For example, a value of Vv =
0.02 produces shock gradients on the order of 102,

The MFE method requires only an 8 x 8 grid to give reasonably accurate
solutfons to this problem, and Figures 3 and 4 show very accurate MFE solu-
tions on a 12 x 12 grid. Here Figure 3 presents an {isometric view of the
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Figure 1. Plot of initial values of u in the 2-D Burger-1ike example on
) a 12 X 12 grid mesh.

<3 Figure 2. Plot of initial values of v in the 2-D Burger-1ike example on
R a 12 X 12 grid mesh.
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Figure 3. Isometric view of v at t = 3.0 in the 2-D Burger-1ike
example on a.12 x 12 MFE grid.
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b Figure 4, MFE grid projections on the X-Y plane at t = 3.0 in
- the 2-D Burger-1ike example on a 12 x 12 grid.
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Figure 5. Contour plots of selected values of u at t =
Burger-1ike example on a 12 x 12 grid.
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Figure 6. Contour plots of selected values of v at t =
2-D Burger-1ike example on a 12 x 12 grid.
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evolving profile of the y component of velocity at t = 3.0, well after the
shock has formed and after the wavefront has undergone significant shearing.
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The x-component of velocity is sufficiently sheared that a hidden line plot, Y
. which is not yet available, is required for easy interpretation by the naked ‘
eye. The MFE grid nodes have migrated extensively from their initial posi- \2
tions as can be seen in Figure 4 which represents the grid mesh projected -~

4
.

onto the x-y plane at t = 3.0. Figures 5 and 6 present contour plots for
selected constant values of u and v, respectively, at t = 3.0. It is evident

:j‘ from the magnitudes of shock gradients and from the regions of significant

- curvature which span nearly the entire domain that an alternative PDE method

= with a fixed grid may require on the order of 104, or more, grid nodes in N
fn :

&

order to achjeve comparable degrees of accuracy in this problem.

This same basic problem can now be made to correspond to a much more
demanding physical problem by letting v = 0.002. Figure 7 shows an isometric
view of the MFE solutfon on a 16 x 16 grid for this case. Shock gradients
are now generated with magnitudes of several times 103, Before discussing
these MFE results in detail, some general observations should be discussed:
It is extremely unlikely that any other existing PDE method using either a
fixed grid or a less than optimal adaptive grid can accurately solve this
test problem with fewer than 109-106 grid nodes. It should also be noted here o
that numerous inviscid solvers which are under development do not apply at *
all to this type of advection-diffusion problem because the Laplacian is an
essential mathematical operator whose effects must be rigorously resolved in
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"\ advection-diffusion PDE's. Because inviscid solvers do not generally solve
PDE's which contain Laplacians, they generate shocks with gradient shapes and
- magnitudes that are governed exclusively by the selected gridding and/or by -

the purely numerical dissipative processes in the inviscid method, per se.
Consequently, inviscid solvers have no chance of resolving correctly any of T

N those physical dissipation effects which are usually expressed by Laplacian :i:f?'

o operators and are present with fundamental physical significance in transport -

ﬁ::f theory, hydrodynamics, plasma physics, continuum mechanics, and many other

i disciplines in the physical scier~es. Thi critical discussion is not in-

é tended to denigrate the extensive .csea n efforts on inviscid PDE solvers S
and/or fixed node POE methods; but it does suggest that efforts to accommo- =

o date Laplacian operators in otherwise inviscid solution methods and efforts
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Figure 7. Isometric view of Burger's test example at t = 1.8 with
v = 0.002 on a 16 x 16 MFE mesh. Shock gradients have
magnitudes of approximately 10° in this solution for u.

to investigate more optimal adaptive grid methods for use in many existing
PDE methods which are applied to advection-diffusion problems should now
assume greatly increased significance. In the meantime, the MFE method is
proving to be a certain kind of research pacesetter, and it is providing
varfous clues to some of the significant new areas vhere mathematics research
can profitably be intensified, as will be discussed further in other task
areas below.
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Early MFE results in 2-D are apparently continuing the trend which
appeared in previous 1-D results. There, MFE solutions of both the Navier-

! Stokes and physically dissipative contfnuun mechanics equations in 1-D ex-

.. hibited perhaps unprecedented simultaneous resolution of extremely disparate

-E microscale and macroscale physical processes.(4'5) While 2-D MFE results
which emerged during this period exhibit similar promising features, numerous

- mathematical problems still require resolution in order to attain fully the

desired levels of success in truly large-scale problems in 2-D. Clues to
.these problem areas can be seen in Figure 7.* For example, the irregularity
‘of the grid triangles in the face of the shock could eventually prove to be
- troublesome. Similarly, the small oscillation at the base of the shock in
: this run is unsatisfactory, even though it can be eliminated in any number of
ways. Extensive testing and analysis has indicated that the causal mechanisms
underlying such mesh irregularities and oscillations in 2-D can be associated
with: (i) time step and error control policies in the basic ODE integrator
of Gear which is presently used, (ii) convergence properties of the linear
solver, and (iii) limitations in the first-generation regularization func-
' ‘ tions. Each of these areas has been under intensive investigation during this
period and some early results and their implications are discussed below.

o~ 2. ODE SOLVERS FOR PDE METHODS

. The current status in this task area is that most existing ODE solvers
are not well-suited for ready implementation in either the MFE method or
numerous other advanced POE methods. This critical comment is, again, not
intended to denigrate the impressive advances in ODE research and development
during the past decade; instead, it is intended to bring a strong new focus
upon the needs of PDE solution methods, in general, and more specifically
upon the pressing needs of adaptive grid PDE methods which may involve large
nunbers of discretized equations with highly distorted grids. Large distorted
grid meshes may, in turn, augur for iterative linear solvers which can solve
poorly conditfioned matrix equations, as will be discussed further below.

54
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*It is apparent that these suggested mathematical problems will have to be
resolved not only for the MFE method but also for most other advanced PDE
methods which may seek to solve the difficult advection-diffusfon equations
which frequently arise in physical problems.
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: A basic difficulty with most stiff ODE software has come to the fore in
~ the present MFE research; i.e., most ODE solver packages have been designed
'. to accommodate many different types of classic ODE problems. By classic, one

refers here to such problems as chemical kinetics systems in which the depen-
dent variables (e.g. species concentrations) are all generically the same.
The error and time step controlling policies in solvers for classic ODE pro-
!l blems are usually less than satisfactory for applications of the ODE package
to PDE solution methods. In PDE systems, the spatial dependence of generi-
cally dissimilar variables comes into play. In fluid dynamics problems, for
example, the overall array of PDE variables which have been discretized on N
e grid nodes (x1, X2, +.. Xy) Can be represented as {p;, mj, Ef, pp, My, Ep,...
Xh pNys En}s where py = p(x3), pp = p(xp), etc. An ODE solver then operates on
. this array of discretized PDE variables as a single large vector {yl, Y25 ¥3s
2 Ygo oo+ Yan-2® Yano1® y3N}.where Y1 = P1s ¥p =my, y3 = E}, yq = Py, etc. Be-
cause the error control policies in the Gear ODE package, for example, are
based upon L2 norm of all normalized quantities y;/(y;)pax unacceptably large
errors can be admitted in some individual components of p, m, or E at arbi-

trary spatial locations. A much better measure for error control policies in

ll PDE applications are maximum norms applied to each discretized PDE variable.
: The implementation of alternative norms is found to extend deeply into the
. logical structure of most ODE software packages, and alterations must usually
be performed by someone who is intimately familiar with the ODE package.
!! ' (Dr. Said Doss is the local expert on these matters in our MFE research.)
%E In view of such considerations, significant levels of effort have been
) devoted during this work period to: (i) modifications of Gear's basic ODE
= method for MFE computations; this involved wholesale alterations of the

internal Gear code structure and also extensive considerations of scaling of
MFE problem variables; and (ii) inevitably, the development of entirely new
ODE integraton procedures which better serve PDE solution needs.

The extensive modifications to Gear's method have sufficed to solve
moderately challenging PDE's with modest numbers of MFE grid nodes as was

;i seen above. But it {is now clear, also, that completely new ODE code struc-
= tures will be needed in pending large-scale MFE computations. We have,
g; therefore, undertaken the development of a low-order Runge-Kutta integration
._.‘
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package for MFE computations. This solver addresses several PDE needs: First,
error control measures operate on flexibly ordered variable arrays using
max imum norms on a (PDE) component-by-component basis. Second, PDE solutions
have been found to require much more gradual time step advancement policies
than have been built into most classic ODE solvers.* This distinction between
classic ODE and PDE time step properties apparently stems from the fundamen-
tally coupled space-time dependences in PDE systems, vis a vis classic ODE
problems which have no direct or implfed spatial dependences. Whereas it is
computatfonally worth the effort to attempt very large incremental increases
(sometimes by several orders of magniiude) in At in classic ODE applications
--even if such attempts may sometimes fail--one finds that the computational
penalties for unsuccessful large At increases are much more severe in those
PDE applications where space-time couplings augur intrinsically for more
gradual At advancement policies. Third, time step control policies in the
new ODE solver also incorporate convergence criteria from iterative linear
systems solvers. Such iterative solvers should henceforth be used in large-
scale MFE computations in the interest of minimizing computer memory require-
ments. Fourth, low-order ODE methods are now used because high-order solvers
provide no apparent advantages in MFE applications and because low-order
methods simplify the numerical logic, improve the code relfability, and avert
possible errors associated with changes of order which are sometimes present
in classic ODE system solvers. Finally, constraints on allowable fractional
changes in PDE dependent variables are incorporated in the overall time step
control policy in the new ODE solver. This new ODE solver is presently'being
implemented for use in large-scale MFE computations; and detailed descriptions
of this solver, in conjunction with MFE test applications, will appear in
forthcomind Journal submissions.

From these initial results it is clear that renewed ODE research efforts
on PDE-related problems, from several possible conceptual bases, is now time-
ly if not long overdue. Our own efforts have barely begun to uncover many of
the most pressing needs, much less to perform the extensive detailed tasks of
nunerical analysis which should now be pursued. Certainly, the present MFE
project would benefit from expanded ODE efforts which deal with: (i) scaled

*These polficies also extend deeply into the ODE code structure.
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and unscaled systems of incommensurate variables on arbitrarily connected
grid meshes, (11) linkage of certain At-sensitive convergence criteria into
the general ODE integration control policy, and (iii) splitting of the solu-
tion of the grid node equations from the solution of the discretized equa-
tions for the physical variables.

3. LINEAR SOLVERS FOR THE MFE METHOD

Advection-diffusion equations have steadfastly resisted (if not defied)
satisfactory numerical solution whenever they have been used to describe
physical brocesses over highly disparate scales. Such problems occur, for
example, in numerous applications of Navier-Stokes equations to viscous com-
pressible fluids which may contain shear layers, shocks, and separated flows.
The basic difficulty derives from the nature of the matrix equations which
must be solved in numerical PDE methods that are applied to these problems.
The matrix equations for discretized advection-diffusion PDE's are large,
sparse linear systems in which the matrices are non-symmetric and are not
dominated by terms on the diagonal. The skewness of these PDE matrices can
become quite large for large At's and for highly distorted grid meshes, both
of which are key fuctors in efficient solutions of these types of advection-
diffusion equations.

The simple advection-diffusion equation, Yy tc-Vy= vvzy, can be used
to fllustrate some of these features. Upon discretization of the advection-
diffusion' equation, a linear system of the form (A+B)X = C must be solved.

‘The matrix A represents the stencil associated with the advection operator,
.and the matrix B represents the stencil associated with a nine point differ-

ence scheme for the Laplacian operator in 2-D. For representative values of
At, these matrices may contain elements with the scaled magnitudes shown

below:
0 15
A= |-15 0
0 -15

1 4
B= | 4 -20

[y

=0 L OO

)
) . (4)
’ and

) - )

1 4

[
L"-]
b

1
(A+8) = (-11 -20
1 -11
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Testing and analysis has revealed that most available linear solvers have
relatively poor rates of convergence when such significant large elements can
occur away from the diagonal in non-symmetric matrices. For example, such
iterative matrix solution methods as conjugate gradient, multi-grid and
numerous other modern 1inear systems solvers which work well for symmetric
matrices in discretized elliptic equations and/or for uniform grid meshes do
not converge satisfactorily in presently considered advection-diffusion
problems. The source of difficulty for the existing linear solvers clearly
derives from the highly skewed matrices and their off-diagonal dominance. We
have also shown during this work period that the direct L-U decomposition
method which has been used in the Gear method until recently becomes both
noisy and computer storage limited when large bandwidths arise in problems
with more than a moderate number of MFE grid nodes. Again, we do not wish to
denigrate the extensive ongoing work on linear systems solvers--but, rather,
to call attention to these essential keys to further progress in certain PDE
research areas. '

Having identified more clearly the significance of these issues, we have
developed in collaboration with Professor Keith Miller one promising new
approach to handling more effectively these imposing PDE requirements on
linear systems solvers. This new matrix solutfon scheme has, so far, achieved
good convergence rates for At's which may be 10 to 20 times greater than the
large values of At called for by the ODE integrator. (It is generally hoped
in PDE solutions that the time step size is determined by the truncation
error of the ODE fntegrator and not by severely limited convergence proper-
ties of the linear solver.) This advanced linear solver has solved the
Burger's equatfons discussed above with the same CPU cost as the direct L-U
decomposition method in the Gear solver, but with greatly reduced storage
requirements. Implementation of this new linear solver for large-scale MFE
computatfons is progressing well, and details of this new approach will
appear in Jjournal submissions during the next work period. Clearly, our
initial efforts on a more adequate linear solver for advection-diffusion
problems have only barely opened a new facet of research which now warrants
much more intensive theoretical and practical analysis, both by ourselves and
by many others.
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4. REGULARIZATION
. Regularization techniques have rarely been used systematically, if at
o all, in PDE research in the past. There is thus presently great confusion
E and misunderstanding of the role of regularization techniques in PDE solution
methods. On the one hand, many practitioners of conventional PDE methods
! suspect that regularization is an unfair trick by which one can force PDE
solutions to come out in any desired manner and that such methods can there-
o fore not be trusted. On the other hand, regularization methods are proving
i to be valid and powerful mathematical tools which can now be applied to
- achieve effective grid movement criteria systematically and to ensure that
;::'. high PDE solution accuracy is also achieved in the process.
C;. Only the simplest, first-generation regularization functions have been
used in 2-D MFE problems to date. These penalty functions act like springs
;':2 and/or dashpots in their action on mesh triangle altitudes (see Figure 8).
- The current penalty functions allow mesh triangles to distort more or less
= arbitrarily, so long as altitude magnitudes remain positive and maintain some
. designated minimum separation. This simple strategy has worked remarkably
well in a surprisingly broad range of 2-D problems, including all of the
"\ results shown in this report. We are presently probing the limits of ade-
quacy of this simple first-generation regularization method in such extended
. applicatfons as Mach stems in gas dynamics and dynamic impact problems in
cont inuum mechanics. In the Burger's test example discussed above with v =
é.?, 0.002 and a 16 x 16 MFE mesh, minimum nodal separations were chosen to be
much smaller than v.. As seen in.earlier figures, the grid triangles can
- become very irregular and assume configurations with extremely large aspect

\ ratfios ‘(0(102) to 0(103)). Figures 9 and 10 below show this same Burger's
\ test problem run with “softer® dashpot forces acting on triangle altitudes
ilzi than in the run shown previously in Figure 7. The triangles in the face of
the shock are more regular in this latter run, and their compaction in the
center of the wavefront resolves the region where intense shearing occurs.
Figure 11 shows the projection of the MFE grid mesh on the x-y plane in this
example. Selected mesh connectfons have been traced in heavy ink in these

latter figures in order to indicate the general migration pattern of the MFE
;'.: nodes. It is evident that extremely large mesh triangle aspect ratios have
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been readily maintained near the shock front, still using the improved L-U
decomposition 1inear solver in the modified Gear integrator in both of these
runs. Perhaps more striking is the large degree of fluid shearing which is
resolved in the face of this skewed shock front by the MFE grid.

Figure 8. Schematic Representation of First-Generation MFE
Regularization Functions in 2-D.

In the long run, there is no fundamental reason, or desire, for the MFE
mesh to always be as highly skewed as the physical flow lines in order to
accurately resolve such shear layers. (It {is nevertheless encouraging at
this stage of development that the mathematical potency of the MFE method is
sufficiently great to handle such large grid aspect ratios effectively.) Al-
ternative regularization criteria which would promote mesh homogeneity (e.g.,
by minimization of grid triangle aspect ratios) are presently under consider-
atfon for use in conjunction with the first-generation regularization func-
tions. Several possible formulations of grid homogenizing regularization
schemes will be tested in the next work period. These new criteria are ex-
pected to improve numerical conditioning properties and thus lead to greater

: computat fonal economy in MFE codes. Mesh homogeniety should also be a signi-

ficant factor in applications which must resolve turbulent eddies and/or

other rotating flows.
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Figure 9. Isometric view of the 2-D solution of the velocity
component, v, in the Burger-1ike example with v = 0.002

on a 16 x 16 MFE grid.
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b component, u, in the Burger-like example with v = 0.002
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rotated by 90° for a clearer view of the doubly skewed
wavefront.
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. We have now barely opened a potentially vast area of investigation of re-
= gularization techniques for adaptive PDE meshes. This is certainly one of the ]
l key areas where we, and perhaps many others, can profitably expend greater ’
efforts, particularly in view of the very attractive MFE properties which are i
emerging in: (1) alternative co-ordinate systems and (ii) the treatment of

interface phenomena, both of which have a direct bearing on, and relationship N
! to alternative regularization methods. Here also the MFE method is a certain :_i
" kind of research pacesetter which is suggesting means of applying these new 1
s mathemat ical methods of regularizing PDE node motions in both new and conven- S
- tional PDE methods so as to resolve such historically persistent dilemmas as £
o singularities at origins of spherical and cylindrical coordinate systems, -

artificial smearing of interfaces, unduly constrained grid aspect ratios,
numerical diffusion, severe time step constraints, and grid node utilization.

5. ALTERNATIVE CO-ORDINATE SYSTEMS

Initial work is in progress on 2-D MFE calculations in cylindrical co-
o) ordinates. The results in this task also provide guidance for later develop-
' ments in spherical co-ordinates. The major issue of present interest is the
apparently natural elimination of singularities at the origin. Such singu-
larities have historically plagued many conventional PDE methods.

o ‘l.-‘;

,‘
I

Transport equatfons contain_ in cylindrical co-ordinates, for example,
advection operators of the form ?F (ry), where r is the radial co-ordinate;
and y is a dependent variable of the PDE system. Singularities or other -

anomalous features frequently occur in various discretized representations of

‘:.’..g‘.‘fll

'-_' the term (y/r) as r—0. In contrast, the MFE discretization is formulated
i in terms of well-defined inner products which eliminate such possible singu-
2 larities. For example, the finner products of the term (y/r) with the basis :
> function a, taken over the interval Ar, is given by e
I(y/r) «ge rdr= Ajy . odr .
Ar r -_l-_tl_i
C The integral of a « y dr is essentially analytic and is readily evaluated '
everywhere on the problem domain. This attractive MFE property in cylindrical T
:j co-ordinates obviously holds in a similar manner in spherical co-ordinates.
- The properties of these r-weighted norms are naturally different than the MFE ‘.::1:
S -19- p
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inner products which were used in the Cartesian co-ordinate systems considered
in earlier MFE work. Analysis and testing of these properties associated with
r-weighted norms and of node controlling penalty functions in cylindrical co-
ordinates have been undertaken in this period, and extensive work is expected
to continue in this area in the future in order to understand and exploit
fully the benefits of this analytic MFE formulation of otherwise troublesome
PDE operators in cylindrical and spherical co-ordinates.
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